Numerical range of a matrix: some effective criteria
نویسندگان
چکیده
منابع مشابه
Some results on the block numerical range
The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.
متن کاملThe numerical range of a nonnegative matrix
We offer an almost self-contained development of Perron–Frobenius type results for the numerical range of an (irreducible) nonnegative matrix, rederiving and completing the previous work of Issos, Nylen and Tam, and Tam and Yang on this topic. We solve the open problem of characterizing nonnegative matrices whose numerical ranges are regular convex polygons with center at the origin. Some relat...
متن کاملWhen is the numerical range of a nilpotent matrix circular?
The problem formulated in the title is investigated. The case of nilpotent matrices of size at most 4 allows a unitary treatment. The numerical range of a nilpotent matrix M of size at most 4 is circular if and only if the traces trM M and trM M are null. The situation becomes more complicated as soon as the size is 5. The conditions under which a 5 5 nilpotent matrix has circular numerical ran...
متن کاملA numerical algorithm for solving a class of matrix equations
In this paper, we present a numerical algorithm for solving matrix equations $(A otimes B)X = F$ by extending the well-known Gaussian elimination for $Ax = b$. The proposed algorithm has a high computational efficiency. Two numerical examples are provided to show the effectiveness of the proposed algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1978
ISSN: 0024-3795
DOI: 10.1016/0024-3795(78)90010-1